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Abstract

The dorsolateral periaqueductal grey (dlPAG) is proposed to play a role in the elaboration of defensive behaviors. Nitric oxide (NO)

donors, injected into this region, induce flight reactions. The reactions have also been observed after electrical or chemical stimulation of the

inferior colliculus (IC). The enzyme responsible for NO formation, neuronal nitric oxide synthase (nNOS), is expressed in the IC. The aims of

this study were to investigate if NO donors injected into the IC would also cause aversive reactions and if these reactions would involve

activation of NMDA receptors. The results showed that 3-morpholinosylnomine hydrochloride (SIN-1; 300 nmol), an NO donor, injected

into the central nucleus but not into the dorsal cortex of the IC (CIC and DCIC, respectively) of male Wistar rats induced flight reactions

characterized by galloping and jumps. Pretreatment (10 min) with methylene blue (MB; 100 or 200 nmol), a guanylate cyclase (GC)

inhibitor, partially inhibited this flight reaction, decreasing the number of jumps. 8-Bromo-cGMP (8-Br-GMP), a membrane-permeable

cGMP analogue, increased the number of contralateral turnings. Pretreatment (10 min) with the NMDA receptor antagonist amino-7-

phosphonoheptanoic acid (AP7; 2 nmol) completely prevented the effects of SIN-1. It is concluded that NO may induce aversive reactions in

the CIC and that these reactions depend on NMDA receptor activation. They may also partially involve facilitation of GC activity.
D 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The inferior colliculus (IC) is a primary acoustic

structure anatomically divided into an external and dorsal

cortex (DCIC) and into a central nucleus (CIC) (Faye-

Lund and Osen, 1985). It is proposed to be involved in the

processing of acoustic information leading to aversive

responses (for a review, see Brandão et al., 1999). It

would act as a filter for sounds that require immediate

and explosive defensive reactions, such as those made by

prey, predators or conspecifics (Casseday and Covey,

1996).

Electrical stimulation or microinjection of the GABA-A

antagonist bicuculline into the IC of rats induces charac-

teristic-aversive responses similar to the stimulation of the

dorsal parts of the periaqueductal grey (PAG) such as

arousal, freezing and escape behavior (Brandão et al.,

1988). Accordingly, in rats, the GABA-A agonist musci-
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mol increases the latency and decreases the frequency of

learned switch-off responses to IC electrical stimulation

(Melo et al., 1992). Moreover, microinjection of NMDA

receptor agonists into this region also elicits a flight

reaction characterized by running and jumps (Cardoso et

al., 1994).

Glutamate binding to NMDA receptors causes calcium

influx that may activate the calcium/calmodulin-dependent

enzyme, neuronal nitric oxide synthase (nNOS) (Garthwaite

et al., 1988, 1989). This enzyme synthesizes nitric oxide

(NO) together with citrulline from L-arginine (Palmer et al.,

1988). NO then diffuses to pre- and postsynaptic neurons

(Edelman and Gally, 1992; Garthwaite, 1991; Snyder and

Bredt, 1991) where it activates the enzyme guanylate

cyclase (GC). This mediates the glutamate-linked enhance-

ment of cGMP in the central nervous system (Bredt and

Snyder, 1989; Garthwaite et al., 1988; Knowles et al.,

1989). In addition, NO may enhance glutamate release in

the brain in a reciprocal regulatory mechanism (Lin et al.,

2000; Montague et al., 1994).

The nNOS is expressed in structures such as the IC, the

dorsolateral periaqueductal grey (dlPAG), the amygdala and
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the hypothalamus (Vincent and Kymura, 1992). These

regions are proposed to be part of a brain-aversive neural

substrate related to the elaboration of defensive behaviors

(Graeff, 1981, 1994). In the dlPAG, NO may be involved in

the aversive action of glutamate (for a review, see De

Oliveira et al., 2001). NO donors microinjected into this

structure induce a flight reaction characterized by coordi-

nated running and jumps with escape attempts (De Oliveira

et al., 2000a). NOS inhibitors and GC antagonist, on the

other hand, cause anxiolytic effects in the elevated plus-

maze (De Oliveira and Guimarães, 1999; Guimarães et al.,

1994).

Considering that nNOS is also expressed in the IC, the

objectives of this work were to investigate if injections of an

NO donor into this region would also induce aversive

behaviors and verify if these reactions would involve GC

and/or NMDA receptor activation.
2. Material and methods

2.1. Subjects

Male Wistar rats weighing 220–240 g at the beginning of

each experiment were housed in pairs in a temperature-

controlled room (24F 1 jC) under standard laboratory

conditions with free access to food and water and a 12:12-

h light/dark cycle (lights on at 6:30 a.m.). Procedures were

conducted in conformity with the Brazilian Society of

Neuroscience and Behavior Guidelines for the Care and

Use of Laboratory Animals, which are in compliance with

international laws and politics. All efforts were made to

minimize animal suffering.

2.2. Drugs

3-Morpholinosylnomine hydrochloride (SIN-1; 300

nmol; RBI), amino-7-phosphonoheptanoic acid (AP7; 2

nmol; Ciba-Geigy), 8-Bromo-cGMP (8-Br-GMP; 225

nmol, Sigma) and methylene blue (MB; 100–200 nmol;

Sigma) were dissolved in sterile isotonic saline. The

solutions were prepared immediately before use. They

were kept on ice and protected from the light during the

experimental session. The doses were chosen based on

previous studies that investigated the effects of these

compounds in the dlPAG (De Oliveira et al., 2000a,

2001; De Oliveira and Guimarães, 1999; Guimarães et

al., 1991).

2.3. Apparatus

The experiments were carried out in a circular open arena

(72 cm in diameter with a 50-cm high Plexiglas wall). The

arena was placed in a sound-attenuated, temperature-con-

trolled (25F 1 jC) room, illuminated with three 40-W

fluorescent bulbs placed 4 m over the apparatus.
2.4. Surgery

Rats were anesthetized with 2.5% 2,2,2-tribromoethanol

(10 mg/kg ip) and fixed in a stereotaxic frame. A stainless

steel guide cannula (0.7-mm OD) was implanted unilaterally

on the right side aimed at the CIC (coordinates: AP=� 1.0

mm from lambda, L= 1.5 mm, D = 3.5 mm) or cortical

(coordinates: AP=� 1.0 mm from lambda, L= 1.8 mm,

D = 2.5 mm, at an angle of 20j) nucleus of the IC. The

cannula was attached to the bones with stainless steel screws

and acrylic cement. A stiletto inside the guide cannulas

prevented obstruction.

2.5. Procedure

Seven days after surgery, the animals were randomly

assigned to one of the treatment groups. Intracerebral

injections were performed with a thin dental needle (0.3-

mm OD) introduced through the guide cannula until its tip

was 1.0 mm below the cannula end. A volume of 0.2

Al (1.0 Al for MB 200 nmol) was injected in 20 s using a

microsyringe (Hamilton, USA) controlled by an infusion

pump (Kd Scientific, USA). A polyethylene catheter (PE

10) was interposed between the upper end of the dental

needle and the microsyringe (De Oliveira et al., 2000a).

The rats were placed in the open arena immediately after

the last injection and the exploratory behavior was video-

taped for 10 min. Afterwards, the Ethovision software

(Version 1.9; Noldus, The Netherlands) analyzed the dis-

tance moved. Episodes of galloping (fast running alternat-

ing stance and swing movements of anterior and posterior

limb pairs), jumping (upward movements) and turning

behavior (360j turnings) were manually recorded to eval-

uate the flight reactions.

Five experiments were performed: (1) Rats (n = 7 per

group) received injections of saline or SIN-1 into the

cortical nucleus of the IC. (2) The animals (n = 6–8 per

group) received injections of these same compounds (saline

and SIN-1) into the CIC. (3) The animals received injections

of saline (n = 5) or 8-Br-GMP (n = 6) into the CIC. (4) They

received injections into the CIC of saline or MB (100 nmol)

followed by saline or SIN-1 10 min later (n= 8–10 per

group); an additional group (n = 6) was treated with MB

(200 nmol) followed by SIN-1 (300 nmol). (5) Rats received

injections into the CIC of saline or AP7, followed by saline

or SIN-1 10 min latter (n = 7 per group). In all experiments,

each rat was placed in the open arena immediately after the

SIN-1 injection.

2.6. Histology

After the behavioral tests, the rats were sacrificed under

deep urethane anesthesia. They were perfused through the

left ventricle of the heart with isotonic saline followed by

10% formalin solution. After that, a dental needle was

inserted through the guide cannula and 0.2 Al of fast green



Fig. 2. Effects of saline (SAL, n = 7) or SIN-1 300 nmol (n = 7)

microinjected into the cortical nucleus of the IC on the distance moved

in the circular arena. Each point represents the mean distance moved in 1

minF S.E.M. There was no difference between groups.
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was injected. The brains were removed and after a

minimum period of 3 days immersed in 10% formalin

solution, 50-Am sections were obtained in a Cryostat

(Cryocut 1800). The injection sites were identified in

diagrams from the atlas of Paxinos and Watson (1997)

and representative sites can be seen in Fig. 1. Rats that

received injections outside the aimed area were excluded

from analysis.

2.7. Statistical analysis

The distance moved in the arena during 10 min was

analyzed by a repeated measure multivariate analysis of

variance (MANOVA) with time (1–10 min) as the within-

subject and drug as the between-subject factors. The degrees

of freedom of the within-subject factors were corrected by

the Huynh–Feldt epsilon. When variances among groups

were not homogenous, the raw data were log transformed

(with the addition of a constant value of 1). In case of a

significant Drug�Time interaction, post hoc comparisons

were performed by t test or one-way analysis of variance

(ANOVA) followed by the Duncan or Student’s t tests, as

appropriate. The total number of jumps and turnings and the
Fig. 1. Injection sites in the DCIC and CIC.
total time of galloping were analyzed by the Kruskal–Wallis

or Mann–Whitney tests, as appropriate. Differences were

considered significant at the P < .05 level.
3. Results

Administration of SIN-1 into the cortical nucleus of the IC

did not change distance moved in the arena [F(1,12) = 2.08,

NS; Fig. 2] nor the decrease in exploratory behavior that

occurred along time [time factor,F(3.3,39.7) = 18.8,P < .001;

Drug�Time, F(3.3,39.7) = 1.21, NS]. It also did not induced

galloping or jumping behavior (P>.05; Table 1).

However, when the drug was injected into the CIC, the

animals displayed flight reactions characterized by a signif-

icant increase in galloping (P < .05) and jumps (P < .05;

Table 1). There were significant effects of drug

[F(1,12) = 24.2, P < .001; Fig. 3] and Drug�Time interac-
Table 1

MeanF S.E.M. time of galloping and number of jumps observed over a

period of 10 min after microinjection into the IC of saline (SAL), SIN-1

(300 nmol), AP7 (2 nmol) or MB (100 nmol)

Region Treatment Galloping (s) Jumps

Cortical nucleus SAL (n= 7) 0 0

of the IC SIN-1 (n= 7) 0 0

CIC SAL (n= 6) 0 0

SIN-1 (n= 8) 94.8F 16.0 * 6.6F 2.0 *

SAL+ SAL (n= 8) 0 0

MB+SAL (n= 8) 0 0

SAL+SIN-1 (n= 10) 106.8F 21.0 * 9.4F 2.2 *

MB+SIN-1 (n= 10) 77.6F 30.3 * 3.1F1.4#

SAL+ SAL (n= 7) 0 0

AP7+SAL (n= 7) 0 0

SAL+SIN-1 (n= 7) 82.4F 14.9 * 6.9F 1.6 *

AP7+SIN-1 (n= 7) 0# 0#

* P< .05 compared to SAL+ SAL.
# P < .05 compared to SAL+SIN-1 (Mann–Whitney test).



Fig. 5. Effects of saline + saline (n= 8), MB 100 nmol + saline (n= 8),

saline + SIN-1 300 nmol (n= 10) or MB+SIN-1 (n= 10) microinjected into

the CIC on the distance moved in the circular arena. Each point represents

the mean distance moved in 1 minF S.E.M. Asterisks signal significant

difference from the saline + saline (ANOVA followed by the Duncan test,

P < .05).

Fig. 3. Effects of saline (SAL, n = 6) or SIN-1 300 nmol (n = 8)

microinjected into the CIC on the distance moved in the circular arena.

Each point represents the mean distance moved in 1 minF S.E.M.

Asterisks signal significant difference from the saline-treated group

detected by t test, P < .05.
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tion [F(6,79) = 4.78, P < .01] in the distance moved in the

arena. SIN-1 significantly increased this parameter at the

3rd, 4th, 5th, 6th, 8th, 9th and 10th minutes of the t test

(P < .05).

Administration of 8-Br-GMP into the CIC failed to

significantly increase the distance moved in the arena

[F(1,9) = 0.32, NS; Fig. 4]. The drug tended, however,

to increase this parameter in the first minute of analysis

[Drug�Time interaction, F(4.58,41.18) = 2.83, P=.03,

t(df = 9) = 2.06, P=.07]. It also significantly increased the

total number of contralateral turnings (saline = 0F 0, 8Br-

GMP= 3.7F 1.4, Mann–Whitney, P=.013). This effect was

absent at the beginning of the analysis and became signif-

icant 8 min after drug injection (P < .05).

Pretreatment (10 min) with 100 nmol of MB did not

prevent the increase in distance moved induced by 300 nmol
Fig. 4. Effects of saline (SAL, n= 5) or 8-Br-GMP (225 nmol, n= 6)

microinjected into the CIC on the distance moved in the circular arena.

Each point represents the mean distance moved in 1 minF S.E.M. There

was a significant Drug�Time interaction (MANOVA, P< .05). The cross

signals a trend for difference between the groups (t test, P=.07).
of SIN-1 in the CIC [Drug�Time interaction, F(24,252) =

1.59, Duncan test, P < .05; Fig. 5]. The total number of

jumps were reduced (P < .05; Table 1), but the total time of

galloping was not significantly changed (P>.05; Table 1). In

the additional group of animals that received 200 nmol of

MB, the drug also failed to reduce the distance moved

induced by SIN-1 (MB+SIN-1 = 9663.8F 2340 cm, sali-

ne + SIN-1 = 10,245.32F 1790 cm) but decreased the num-

ber of jumps 4 min after drug injection (MB + SIN-

1 = 0.17F 0.17, saline + SIN-1 = 1.6F 0.45, P=.031,

Mann–Whitney).

AP7 administered before (10 min) SIN-1 completely

prevented the increase in distance moved along the session

[drug factor, F(3,24) = 4.88, P < .01, Duncan test, P < .05;

Fig. 6]. AP7 also prevented jumping (P < .05; Table 1) and
Fig. 6. Effects of saline + saline (n= 7); AP7 2 nmol + saline (n= 7);

saline + SIN-1 300 nmol (n= 7); AP7 + SIN-1 (n= 7) microinjected into the

CIC on the distance moved in the circular arena. Each point represents the

mean distance moved in 1 minF S.E.M. Saline + SIN-1 group was

significantly different from the other groups along the session (MANOVA

followed by the Duncan test, P< .05).
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galloping behavior (P < .05; Table 1) induced by SIN-1 in

the CIC.
4. Discussion

Microinjection of the NO donor SIN-1 into the CIC, but

not into the cortical nucleus of the IC of rats, induced long-

lasting (10 min) increase in the distance moved, galloping

and jumps. The latter two behaviors are proposed as

important ethological parameters for measuring flight reac-

tions in rodents (Vargas and Schenberg, 2001).

In a previous work, we showed that SIN-1, in a dose-

dependent manner, was also able to induce similar flight

reactions when injected into the dlPAG (De Oliveira et

al., 2000a). In both studies, there was approximately 3-

min latency for the beginning of the reaction. This is

compatible with the slow NO release produced by this

compound through the formation of the intermediate

compound SIN-1C (Feelish et al., 1989; Southam and

Garthwaite, 1991). Corroborating this possibility, the

response elicited by another drug that rapidly releases

NO, DEA/NO (Southam and Garthwaite, 1991), showed

a much smaller latency and duration (De Oliveira et al.,

2000a).

In contrast to previous results obtained in the dlPAG

using similar doses of 8-bromo-cGMP (De Oliveira et al.,

2001), this membrane-permeable analogue of cGMP failed

to increase locomotion in the open arena. There was,

however, a tendency to increase locomotion during the first

postinjection minute. Also, the drug increased the number of

contralateral turnings at the end of the session. Other studies

have also reported increased turning behavior after stimu-

lation of the dlPAG, the superior colliculus or the IC

(Cardoso et al., 1994; Northmore et al., 1988; Molchanov

and Guimarães, 1999). This behavioral change was not seen

after SIN-1 administration into the CIC, perhaps because it

is incompatible with the wild running and galloping behav-

ior induced by this drug.

The GC inhibitor MB, which in a lower dose (30 nmol)

significantly prevented the effects of SIN-1 in the dlPAG

(De Oliveira et al., 2000a), could only partially inhibit the

flight reaction induced by this drug in the CIC, even at

very high doses (200 nmol). Together, these results

suggest a limited role of cGMP-dependent mechanisms

on the flight reactions induced by exogenously adminis-

tered NO in the CIC. However, NOS neurons are much

more densely distributed in the dlPAG than in the CIC

(Vincent and Kymura, 1992). Since NO can diffuse rather

easily, it is possible that the volume of the MB solution

injected and the interval between the two injections were

not sufficient to inhibit GC in the whole area reached by

NO.

NO participation in aversion-related mechanisms has

already been shown in the dlPAG (De Oliveira et al.,

2000a) and in other brain areas through molecular techni-
ques. Restraint stress increases nNOS mRNA expression in

the dlPAG, hypothalamic paraventricular nucleus and me-

dial amygdala (De Oliveira et al., 2000b) and increases

NADPHd activity in the dlPAG and IC (Krukoff and

Khalili, 1997). Increased c-fos expression is observed in

these areas after injection of SIN-1 into the dlPAG (De

Oliveira et al., 2000a). Although the flight reactions elicited

from the CIC are described as less explosive than those

induced from the dorsal PAG (Brandão et al., 1999), the

flight reactions induced by SIN-1 in the CIC were quite

similar to that induced in the dlPAG.

Despite the reciprocal connection between the IC and

the PAG (Herrera et al., 1988), flight reactions induced by

stimulation of the IC seem to occur by a mechanism that

does not necessarily depend on this structure since exten-

sive lesions of the dlPAG do not modify the response

(Bagri et al., 1992; Maisonnette et al., 1996). Corroborat-

ing this possibility, the increase in the distance moved

induced by SIN-1 in the CIC was greater than that

observed when the compound was administered into the

dlPAG (data not shown). This makes it unlikely that the

drug effects in the CIC are due to NO diffusion to the latter

region.

The amygdala may have a role in the elaboration of

aversive reactions after stimulation of the CIC. These

structures are connected through the medial geniculate body

of the thalamus so that acoustic inputs may reach the

amygdala bypassing the neocortex (LeDoux et al., 1990).

Aversive responses to conditioned sound previously paired

with electric footshock are disrupted by bilateral lesions of

the IC but not of the auditory cortex (LeDoux et al., 1984).

Moreover, lesions of the central nucleus of the amygdala

reduce the aversiveness of the electrical stimulation of the

IC (Maisonnette et al., 1996) while lesion of the telenceph-

alon does not (Brandão et al., 1988). Hence, it is possible

that these aversive reactions do not necessarily involve

cortical analysis but are integrated in a very primitive level

of subcortical organization (Tomaz et al., 1988; Lamprea et

al., 2002).

Stimulation of glutamate NMDA receptors in the CIC

causes flight reactions that are prevented by AP7, an

NMDA receptor antagonist (Cardoso et al., 1994; Pandossio

and Brandão, 1999). NO donors can increase glutamate

release in brain structures such as the striatum (Guevara-

Gusman et al., 1994) and hypothalamus (Prast et al., 1996).

Moreover, NMDA-induced glutamate release in the striatum

is inhibited by NOS inhibitors (Bogdanov and Wurtman,

1997). Similar inhibition was found in the cortex of nNOS

knockout mouse (Kano et al., 1998). In our study, the

aversive effects of SIN-1 were prevented by AP7. There-

fore, it is possible that NO donors induce flight reactions in

the CIC by facilitating glutamate release.

In summary, SIN-1 (an NO donor) injected into the CIC,

but not into the cortical nucleus of the IC, induces flight

reaction. This reaction was partially inhibited by MB but

completely prevented by AP7, suggesting that NO may



F.A. Moreira et al. / Pharmacology, Biochemistry and Behavior 76 (2003) 35–4140
induce aversive responses in this structure through gluta-

mate-dependent mechanisms.
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